Сверхпроводимость
В 1911 г Камерлинг-Оннес обнаружил, что электрическое сопротивление ртути при температуре 4,15 К скачкообразно обращается в нуль. Это явление, названное сверхпроводимостью было затем обнаружено и для других металлов и их соединений, Температура, при которой начинается сверхпроводимость, называется критической температурой – Тk .
В последние 35 лет был обнаружен ряд высокотемпературных сверхпроводников на основе металлооксидной керамики (соединения типа La-Ba-Cu-O и Y-Ba-Cu-O ) с критической температурой выше 100 К .
Для сверхпроводника характерно то, что магнитное поле не проникает в его толщу (эффект Мейсснера). Формально можно сказать, что сверхпроводник обладает нулевой магнитной проницаемостью ( μ = 0 ) т.е. является идеальным диамагнетиком.
18-3
Достаточно сильное внешнее магнитное поле разрушает сверхпроводящее состояние. Значение магнитной индукции, при котором это происходит, называется критическом и обозначается – Bk .
Если усиливать ток, текущий через сверхпроводник, включённый в общую цепь, то при значении плотности тока jk сверхпроводящее состояние разрушается. Значение jk зависит от температуры подобно зависимости Bk .
Сверхпроводимость представляет собой явление, в котором, как и в сверхтекучести, квантово-механические эффекты обнаруживаются в макроскопических масштабах. Но электроны являются ферми-частицами, а сверхтекучесть может наблюдаться только в системе бозе-частиц.
Электроны в металле кроме кулоновского отталкивания испытывают особый вид взаимного притяжения, которое в сверхпроводящем состоянии преобладает над отталкиванием. В результате электроны проводимости объединяются в так называемые куперовские пары . Электроны каждой такой пары имеют противоположно направленные спины. Спин пары равен нулю, и она представляет собой бозон. Бозоны находятся в основном состоянии, из которого их трудно перевести в возбуждённое состояние. Следовательно, куперовские пары, придя в согласованное движение, остаются в этом состоянии неограниченно долго.
Возбуждённое состояние электронной системы, находящейся в сверхпроводящем состоянии, отделено от основного состояния энергетической щелью ширины Есв . Поэтому квантовые переходы этой системы не всегда будут возможными. При малых скоростях своего движения (отвечающих плотности тока, меньшей jk ) электронная система не будет возбуждаться, а это и означает движение без потерь энергии, т.е. без электрического сопротивления.
Ширина энергетической щели Есв с ростом температуры уменьшается и обращается в нуль при критической температуре Tk . Все куперовские пары разрушаются, и вещество переходит в нормальное состояние.
Еще по теме Сверхпроводимость:
- 3.4. Обращения граждан.
- Заключение
- 9.3. Виды административного принуждения
- Общая характеристика исследования
- 16.2. Способы обеспечения законности и дисциплины в государственном управлении.
- Проблема выявления собственно церковнославянизмов и церковнославяно-русских полисемантов в идиолексиконе Вяземского: некоторые процедуры и результаты
- ПРИЛОЖЕНИЕ
- Формирование представлений о личностных и профессионально важных качествах идеального школьного учителя в 1900-1920 гг.
- Право на удовлетворение иска и право на получение судебной защиты
- Психолингвистический анализ современной медианоминации
- 21. Исполнение опекунами и попечителями обязанностей в отношении подопечного. Распоряжение и доверительное управление имуществом подопечного.
- Статистика влияния типа грунтов на распространение КРН
- 53. Оспоримые сделки: основания, условия, последствия и момент недействительности.
- Моделирование методом конечных элементов. Численный эксперимент
- Химченко Алексей Игоревич. ИНФОРМАЦИОННОЕ ОБЩЕСТВО: ПРАВОВЫЕ ПРОБЛЕМЫ В УСЛОВИЯХ ГЛОБАЛИЗАЦИИ. Диссертация на соискание ученой степени кандидата юридических наук. Москва - 2014, 2014
- Комбинационные резонансы аддитивно-разностного типа
- Заячковский О.А., Маскаева И.И., Усенко Ю.Н.. Теория государства и права: учебное пособие. — Калининград: Изд-во БФУ им. И. Канта,2011. — 272 с., 2011