4. Способы и средства взрывания зарядов ВВ

Возбуждение детонации в зарядах ВВ, осуществляемое надежным и рациональным способом, является одним из главных условий эффективного развития технологии взрывных работ. В мировой практике используются различные способы взрывания зарядов, которые можно разделить на три группы:

- электрические,

- неэлектрические,

- комбинированные.

4.1 Подрыв с помощью электродетонаторов

В системах электрического инициирования энергия от внешнего источника электрического тока передается к электродетонаторам (зарядам ВВ) по электровзрывным сетям. Основными элементами электрического взрывания являются электродетонаторы нормальной чувствительности, рис.20,а.

Рис. 20 Электродетонаторы мгновенного – ЭД (а), короткозамедленного – ЭДКЗ (б) и замедленного ЭДЗД (в) действия:

1 – пробка; 2 – зажигательная головка; 3 – корпус (гильза); 4 – втулка (чашечка); 5 – воспламеняющая смесь; 6 – замедляющий состав; 7 –первичный заряд ВВ; 8 – вторичный заряд ВВ.

Выделяют следующие типы электродетонаторов:

- по виду заряда инициирующего ВВ, который в нем находится (гремучертутно-тетриловый и азидо-тетриловый);

- по времени срабатывания (мгновенного, рис.20,а, короткозамедленного, рис.20,б, и замедленного действия, рис.20,в);

- по конструктивному оформлению и по назначению (общего назначения, для сейсморазведки, обработки металлов, для торпедирования нефтяных скважин и др.);

- по условиям применения (непредохранительные и предохранительные – для шахт, опасных по взрыву газа или пыли);

- по чувствительности к блуждающим токам (нормальной, пониженной и очень низкой чувствительности или грозоустойчивые).

Мировые фирмы производят электродетонаторы высокоточные с жестко фиксированными интервалами времени замедления, новые системы ЭД, защищенные от действия статического электричества, блуждающих и других посторонних токов, прецизионного действия, применение электронных устройств для программированного последовательного инициирования зарядов и т.д. Разработаны различные приборы для их взрывания и контрольно-измерительная аппаратура.

Преимущества электрического способы взрывания перед другими заключается в возможности проверки каждого ЭД и всей взрывной сети перед взрывом. Ведущими мировыми производителями электрических средств взрывания являются компании "Нитро Нобель" (Швеция), "Дюпон", "Атлас Паудер", "Остин Паудер", "Геркюлес Инк", "Енсайн-Бикфорд" и др. (США), "Ай-Си-Ай Нобель Иксплозивс" (Великобритания) и др.

Наиболее распространенными типами ЭД и соответствующими способами взрывания в угольных шахтах являются: "Акудет Марк V", "Тренчдет", "Геркюлес Инк", "Мастердет", "Магнадет", "Магна" и др.

Основные параметры электродетонаторов:

- сопротивление ЭД – сумма электрического сопротивления мостика накаливания и выводных проводов в холодном состоянии;

- безопасный ток – максимальное значение (верхняя граница) постоянного тока, который не вызывает взрыв при неограниченном времени его прохождения через ЭД;

- длительный воспламеняющий ток – минимальное значение (нижняя граница) постоянного тока, который, протекая через ЭД за время более 1 мин., вызывает взрыв;

- стомиллисекундный воспламеняющий ток – значение постоянного тока, который, протекая через ЭД в течение 10 мс, вызывает его взрыв;

- импульс воспламенения – наименьшее значение импульса тока (постоянного), при котором происходит зажигание электровоспламенителя;

- время передачи – время от момента воспламенения электровоспламенителя ВВ до момента выхода луча огня из его головки, а для ЭД мгновенного действия – до его взрыва;

- время срабатывания – время от момента включения тока до момента взрыва ЭД.

Гарантийный ток – это минимальный ток, который, проходя через последовательно включенные ЭД, вызывает в них воспламенение всех электровоспламенителей. Гарантийная величина переменного тока принимается равной 2,5 А. В случае использования постоянного тока его гарантийная величина должна быть не меньшей чем удвоенное значение стомиллисекундного тока и обычно принимается равной 1 А, однако при одновременном взрыве 200 ЭД это значение увеличивается до 1,3 А.

Для производства взрывных работ в угольных и сланцевых шахтах, опасных по взрыву газа или пыли, с 1990 г. выпускаются предохранительные мощные ЭД короткозамедленного действия пониженной чувствительности к действию зарядов статического электричества и блуждающих токов типа ЭД-КЗ-ПК и нормальной чувствительности к действию зарядов статического электричества и блуждающих токов типа ЭД-КЗ-ПКМ. Для шахт, опасных по взрыву газа или пыли, выпускаются непредохранительные ЭД с замедлением типа ЭД-3-Н, которые имеют 23 серии замедления.

"Едиными правилами безопасности при взрывных работах" предусмотрены следующие основные требования при взрывании с применением электродетонаторов:

- провода ЭД после проверки их сопротивления должны быть замкнуты накоротко и в таком положении находиться все время до момента присоединения к взрывной сети. При выполнении этой операции на рабочем месте проверяющего допускается иметь не более 100 ЭД;

- в шахтах (рудниках), опасных по газу или пыли, провода электродетонаторов и электровзрывной сети должны соединяться только с применением

контактных зажимов;

- электровзрывная сеть должна быть двухпроводной. Использование воды, земли, труб, рельсов, канатов и т.п. в качестве одного из проводников запрещается. До начала заряжания взрывник обязан осмотреть взрывную магистраль, убедиться в ее исправности;

- в шахтах (рудниках), опасных по газу или пыли, должны применяться электродетонаторы только с медными проводами. Это требование распространяется также на соединительные и магистральные провода (кабели) взрывной сети;

- запрещается монтировать электровзрывную сеть в направлении от источника тока или включающего ток устройства к заряду;

- после монтажа электровзрывной сети необходимо проверить ее проводимость;

- постоянная взрывная магистраль должна отставать от места взрыва не менее чем на 100 м;

- включение тока для взрывания должно проводиться из безопасного места. Взрывной прибор должен иметь специальные клеммы для подсоединения магистральных проводов электровзрывной сети. Подсоединение магистральных проводов к взрывному прибору (машинке) следует проводить в месте укрытия взрывника;

- концы проводов смонтированной части электровзрывной сети должны быть замкнуты накоротко на все время, предшествующее подсоединению их к проводам следующей части электровзрывной сети. Запрещается присоединение проводов уже смонтированной части электровзрывной сети к следующим проводам, пока противоположные концы последних не замкнуты накоротко;

- концы магистральных проводов электровзрывной сети также должны быть замкнуты в течение всего времени до присоединения их к клеммам прибо ра или устройства, включающего ток для взрывания;

- со всех электроустановок, кабелей, контактных и воздушных проводов и

других источников электроэнергии (в т.ч. источников опасных электромагнитных излучений), действующих в зоне монтажа электровзрывной сети, напряжение должно быть снято с момента монтажа сети;

- в подземных условиях в зону монтажа электровзрывной сети необходимо включать выработки, в которых монтируется такая сеть;

- при монтаже электровзрывной сети в подземных выработках допускается не отключать находящиеся в пределах зоны монтажа осветительные электрические сети не более 42 В, вентиляторы местного проветривания и аппаратуру в исполнении РО;

- при взрывании с применением электродетонаторов выход взрывника из укрытия после взрыва разрешается не ранее, чем через 5 мин. и только после отсоединения электровзрывной сети от источника тока и замыкания ее накоротко;

- если при включении тока взрыва не произошло, взрывник обязан отсоединить от прибора (источника тока) электровзрывную сеть, концы ее замкнуть накоротко, взять с собой ключ от прибора (ящика, в котором находится взрывное устройство) и только после этого выяснить причину отказа. Выходить из укрытия в таком случае можно не ранее, чем через 10 мин., независимо от типа применяемых электродетонаторов;

- взрывные приборы (машинки) перед выдачей взрывникам должны проверяться согласно инструкциям по эксплуатации на соответствие установленным техническим характеристикам, в т.ч. на развиваемый ток, импульс тока и, на шахтах (рудниках), опасных по газу или пыли, на длительность импульса напряжения.

В табл.8 приведены характеристики трех типов электродетонаторов

(рис.20), применяемых при взрывных работах в угольных шахтах.

Технология электрического взрывания требует выполнения следующей последовательности работ:

- проверить и подобрать электродетонаторы по сопротивлению;

- изготовить патроны-боевики (рис.21);

- подать предупредительный сигнал (один длинный), ввести заряды ВВ в шпуры, скважины или камеры и произвести их забойку;

- выполнить монтаж электровзрывной сети;

- проверить исправность электровзрывной сети и определить ее сопротивление;

- подать боевой сигнал (два длинных), подсоединить магистральные провода к источнику тока и произвести взрыв;

Рис.21 Последовательность изготовления патрона-боевика:

1 – создание углубления под детонатор в торце патрона ВВ; 2 - установка детонатора контрольной трубки в патрон; 3 - закрытие торца патрона; 4 - завязывание торца патрона.

- после проветривания осмотреть взорванный забой; при наличии отказов ликвидировать их;

- подать сигнал отбоя (три коротких).

При взрывании ЭД в угольных и сланцевых шахтах принята единая схема – последовательное соединение электродетонаторов. Достоинства схемы последовательного соединения:

- через все ЭД проходит электрический ток одинаковой величины;

- для взрыва необходим источник тока минимальной мощности;

- меньшая длина проводов, простота монтажа, легкий контроль за исправностью электровзрывной сети;

- простота расчетов электровзрывной сети.

Недостатки схемы последовательного соединения:

- опасность массового отказа в случае попадания в электровзрывную сеть дефектного ЭД;

- невозможность одновременного взрывания большого количества электродетонаторов.

Таблица 8

Типы электродетонаторов и интервалы замедлений

Совершенствование технологии и методов контроля за безопасностью электровзрывания открыли новые возможности для развития электрического способа взрывания на открытых и подземных горных работах.

Однако развитие любой технической системы, как и электрического способа взрывания зарядов ВВ, в конце концов, приводит к необходимости создания принципиально новых элементов (как, например, система "Магнадет"), либо принципиально новой системы, физико-технические параметры которой исключили бы недостатки существующей.

На базе анализа электрической системы взрывания зарядов ВВ, можно выделить недостатки, характерные для разных этапов ее развития.

1. Недостатки, определяемые физико-техническими характеристиками элементов (недостатки очевидные). Этот тип недостатков лежит в основе, т.е. в способе технической реализации используемого физического эффекта. К этому типу относятся недостатки, связанные с опасностью преждевременного взрыва в результате появления в сети посторонних токов, сложностью монтажа сети, особенно при большом количестве ЭД, токсичностью продуктов взрыва ЭД.

2. Недостатки, проявляющиеся в процессе эксплуатации системы и ее элементов (недостатки скрытые). К этому типу можно отнести, например, снижение уровня безотказности действия ЭД в течение гарантийного срока хранения.

3. Недостатки потенциальные, т.е. связанные с изменением эксплуатационных требований при усовершенствовании технологического процесса в целом. От того, несколько высок физический потенциал системы, ее невостребованные скрытые возможности, зависит будущее системы, связанное с эффективной ее эксплуатацией. К таким недостаткам относятся неудовлетворительные параметры, характеризующие точность интервала замедления ЭД.

4. Технологические недостатки, связанные с несоблюдением технических условий изготовления элементов системы. Установлены как скрытые дефекты ЭД (некачественный контакт мостика накаливания с вилочкой и т.д.).

Перечисленные недостатки резко снижают уровень безопасности и эффективности электрического способа взрывания. Установлено, что отказы шпуровых зарядов ВВ в угольных и сланцевых шахтах происходят, в основном, по техническим причинам и зависят от качества изготовления основных элементов системы. Кроме этого, уровень качества элементов определен нормативно-технической документацией, которая устанавливает допустимую вероятность появления отказа в течение года, равную 10–6. А уровень эксплуатационного качества промышленных ЭД составляет 3·10–3. Таким образом, в электрической системе основным элементом, приводящим к снижению безопасности действия системы, является ЭД.

4.2 Неэлектрические способы взрывания

К неэлектрическим способам инициирования зарядов ВВ относится огневое взрывание, которое осуществляется с помощью огнепроводного шнура, капсюля-детонатора и зажигательного патрона. В современных неэлектрических способах взрывания передачу энергии от внешнего источника к детонаторам осуществляют с помощью световодов, а также полого пластикового шнура различных конструкций, у которых:

- внутренняя поверхность шнура покрывается тонким слоем ВВ (система "НОНЕЛЬ" – Швеция, "Эдилин", "УНСИ", "Снежинка" – Россия, "Деталайн" – США и др.);

- внутренний объем шнура заполняется взрывчатой газовой смесью (система "Херкудет" – США); внутренние стенки покрываются горючей смесью, горящей со скоростью до 1000 м/с (система LVST – США).

4.2.1. Огневое инициирование зарядов

Огнепроводный шнур (ОШ), рис.22, представляет собой спрессованную из дымного пороха и добавок пластификатора сердцевину с центральной направляющей нитью, закрытую нитяной оплеткой с гидроизоляционным слоем. Внешний диаметр шнура 5,5 мм. В соответствие с требованиями "Единых правил безопасности при взрывных работах" отрезок ОШ длиной 60 см должен сгорать за 60-68 с.

Основные виды ОШ: экструзионный ОШЭ в полиэтиленовой оболочке, асфальтированный ОША предназначены для сухих и влажных забоев, пластикатный ОШП – для обводненных забоев, двойной асфальтированный ОШПА предназначен для мокрых забоев.

Рис.22 Огнепроводный шнур:

1 – направляющая нитка; 2 – пороховой сердечник; 3 – оплетка; 4 – гидроизоляция.

Капсюль-детонатор, рис.23, представляет собой цилиндрическую гильзу (медную, алюминиевую или биметаллическую) диаметром 6 – 7 мм и длиной 48–51 мм, снаряженную зарядами первичного инициирующего ВВ: гремучая ртуть (0,5 г), ТНРС (0,1 г), азид свинца (0,2 г) и вторичного инициирующего ВВ – тетрила (или гексогена) массой 1 г.

Рис.23 Капсюль-детонатор гремучертутнотетриловый № 8С (а) и азидотетриловый № 8А (б): 1 – гильза; 2 – гремучая ртуть; 3 – ТНРС; 4 – азид свинца; 5 – тетрил; 6 – чашечка; 7 – кумулятивная выемка.

В капсюлях-детонаторах заряд первичного инициирующего ВВ выбирается таким, чтобы вызвать детонацию во вторичном инициирующем ВВ. Заряд вторичного ВВ подбирается из условий безотказного инициирования зарядов порошкообразных промышленных ВВ. Для усиления инициирующей способности дно КД имеет кумулятивную выемку.

В настоящее время используют следующие КД: №8М в медной гильзе, №8Б в бумажной гильзе, №8С в биметаллической гильзе. Капсюли-детонаторы, снаряженные азидом свинца, немного мощнее гремучертутных, имеют высокую чувствительность к трению, удару, сжатию и огню.

Зажигательные патроны, рис.24, применяют для группового взрывания зарядов ВВ путем зажигания 10–38 зажигательных трубок или отрезков ОШ.

Зажигательная смесь состоит из 85% мелкозернистого пороха, 5% канифоли и 10% парафина. Длина зажигательного ОШ составляет 15–25 см. Едиными правилами безопасности при ведении взрывных работ огневой способ взрывания в угольных и сланцевых шахтах запрещен к применению.

Рис.24 Зажигательный патрон:

1 – гильза; 2 – зажигаемые отрезки ОШ, идущие к зарядам ВВ; 3 – поджигающий ОШ; 4 – фиксирующий шпагат; 5 – зажигательный состав (толщина слоя 2.3 мм).

4.2.2 Система "НОНЕЛЬ"

Все современные неэлектрические системы инициирования полностью безопасны к различного рода электромагнитным наводкам и, при этом, позволяют создавать схемы взрывания зарядов с практически неограниченными возможностями управления процессами разрушения массивов горных пород. Основным элементом системы "НОНЕЛЬ" является полый пластиковый шнур-волновод, внутренняя поверхность которого покрыта тонким слоем взрывчатой смеси. При инициировании воздушная ударная волна распространяется по каналу шнура со скоростью 2 км/с. Ударная волна передает энергию, которой достаточно для инициирования КД, закрепленного на одно из концов шнура-волновода (рис.25).

Шнур “НОНЕЛЬ”, выполненный в виде пластиковой трубки (внешний диаметр 3 мм, внутренний – 1,5 мм), не имеет взрывчатых свойств, он не при каких условиях не возбуждает детонацию ни в одном из ВВ, которые используются на практике. Шнур не взрывается ни от удара, ни от воздействия огня. При передаче ударной волны шнур не разрушается, выполняя роль только лишь проводника сигнала.

Шнуры серии НD имеют повышенную прочность на разрыв, износостойкость и сохраняют свою работоспособность до температур +50°С. КД “НОНЕЛЬ” представляет собой алюминиевую гильзу, в середине которой находится чувствительное к огню первичное инициирующее ВВ, вызывающее детонацию во вторичном бризантном ВВ.

Достоинства системы "НОНЕЛЬ" - это безразличие к действию блуждающих токов, электростатических зарядов и электромагнитных полей в диапазоне разных частот;

- повышение продуктивности вследствие ускорения подготовки взрыва;

- снижение стоимости взрывных работ;

- высокая надежность.

Недостатки системы "НОНЕЛЬ" – это невозможность проверки целостности взрывной сети;

- многоэлементность.

Неэлектрическая система "НОНЕЛЬ" предназначена для открытых и подземных взрывных работ, в том числе и в условиях шахт, опасных по взрыву газа или пыли.

4.2.3 Система "ОПСИН"

В системе лазерного инициирования "ОПСИН", рис.26, передача энергии от лазера к оптическим детонаторам осуществляется с помощью световодов либо непосредственно через воздушную атмосферу.

Области применения новой прецизионной системы ОПСИН:

- производство массовых взрывов шпуровых и скважинных зарядов, сварка, гравировка, компактирование взрывом; упрочнение изделий со сложным рельефом поверхностей; взрывные работы в стеснённых условиях городов, производственных предприятий и т.п. Получение профилированных детонационных волн (плоских, сферических, цилиндрических и др.), которые невозможно реализовать при использовании традиционных средств инициирования. Испытания конструкций корпусов ракет на предмет устойчивости к импульсному воздействию рентгеновских и ультрафиолетовых излучений боевых лазеров и т.д.

Система обеспечивает особо высокие уровни безопасности и точности управления многозарядного взрывания.

Высокая безопасность обусловлена использованием специальных взрывчатых составов (ВС), высокочувствительных к воздействию характерного импульса лазерного излучения и имеющих низкую чувствительность к механическим и тепловым воздействиям.

Высокие точность управления обеспечивается за счёт:

- малого времени задержки срабатывания ВС (£10–6 с);

- программируемого управления работой отдельных каналов лазерного устройства, обеспечивающего подачу лазерной энергии в локальные участки

оптоволоконной кабельной сети;

Рис.25 Соединительный блок и последовательность его монтажа в системе НОНЕЛЬ: а) – общий вид соединительного блока; б) – подключение шнуров-волноводов к соединительному блоку; в) – соединительный блок в зборе с четырьмя шнурами-волноводами; 1 – шнур-волновод; 2 – неэлектрический капсюль-детонатор; 3 – соединительный блок; 4 – заслонка; 5 – крышка; 6 – выводные шнуры для подключения к скважинным зарядам; 7 – внутрискважинный шнур "НОНЕЛЬ" для замедленного взрывания зарячдов ВВ; 8 – скважина.

Рис.26 Схема устройства оптического детонатора (ОД):

1 – алюминиевая трубка; 2 – втулка; 3 – вторичное инициирующее ВВ; 4 – стакан с первичным инициирующим ВВ (светочувствительное ВВ); 5 – канал для установки световода; 6 – световод; 7 – пиропатрон.

- поверки целостности оптоволоконной сети перед взрыванием за счёт измерения уровня лазерного излучения малой мощности отраженного от поверхности высокочувствительного взрывчатого состава оптических детонаторов.

4.2.4 Система «Прима-ЭРА»

Для исключения недостатков традиционных средств инициирования ВВ разработана неэлектрическая система инициирования (НСИ) Прима-ЭРА. Система Прима-ЭРА является водостойкой с повышенной безопасностью по производству и применению, предназначена для инициирования промежуточных детонаторов и патронов боевиков при ведении взрывных работ на дневной поверхности, в забоях подземных выработок (в рудниках и шахтах, не опасных по газу и пыли), при строении тоннелей, а также под водой. Позволяет создавать схемы мгновенного и замедленного взрывания с широким диапазоном интервалов замедления.

По заказу потребителя НСИ Прима-ЭРА может комплектоваться различными типами элементов: Прима-ЭРА-С соединитель (коннектор), Прима-ЭРА-Д детонатор, Прима-ЭРА-СД двойная, Прима-ЭРА-Т (Прима- ЭРА -Тм) тоннельная.

Прима-ЭРА-С соединитель (коннектор) поверхностная, представляет собой комплект, состоящий из капсюля-детонатора (КД) №6 с замедлением 0, 9, 25, 42, 67, 109 и 176 мс со стандартным интервалом замедления и волновода. Система предназначена для передачи и распределения инициирующего импульса при ведении взрывных работ на дневной поверхности, на открытых горных разработках.

Конструкция пластикового коннектора позволяет производить коммутацию до шести волноводов, а также при необходимости проводить перекоммутацию сети, выполнять работы в зимнее время и обеспечивать исключение разрушения поверхностной коммутирующей цепи.

Прима-ЭРА-Д детонатор внутрискважинная, представляет собой комплект, состоящий из КД №8 с замедлением от 0 до 400 мс с интервалом 100 мс, от 400 до 500 мс с интервалом 25 мс и волновода. Предназначена для инициирования промежуточных детонаторов и патронов-боевиков при взрывании скважинных зарядов.

Прима-ЭРА-С и Прима-ЭРА-Д предназначены для совместного использования при коммутации взрывной сети приведении взрывных работ на дневной поверхности.

Прима-ЭРА-СД двойного действия, представляет собой комплект, состоящий из КД № 6 с замедлением аналогично Прима-ЭРА-С, оснащенного соединителем (коннектором) соответствующего цвета и КД №8 с замедлением аналогично Прима-ЭРА-Д, соединенных между собой волноводом. Конец системы с КД №8 используется внутри скважины, а конец системы с КД №6 с помощью коннектора соединяется со следующим волноводом системы для коммутации взрывной сети.

Прима-ЭРА-Т тоннельная представляет собой комплект, состоящий из КД №8 с замедлением от 100 до 400 мс с интервалом 100 мс, от 400 до 500 мс с интервалом 25 мс, от 500 до 6000 мс с интервалом 500 мс, от 6000 до 9000 мс с интервалом 1000 мс и волноводом. Система предназначена для ведения взрывных работ в подземных горных выработках не опасных по газу и пыли.

Волновод системы Прима-ЭРА предназначен для передачи детонационной волны от инициирующего устройства к капсюлю-детонатору и представляет собой полую пластиковую трубку голубого, желтого или оранжевого цвета с наружным диаметром (3,00±0,15) мм. На внутреннюю поверхность трубки нанесено активное вещество массой 20 мг/п. м длины, обладающее скоростью передачи импульса до 2000 м/с.

Структура волновода обеспечивает ему прочностные качества при линейных нагрузках до 120 кг. При деформации в 200% сохраняется стабильность волновода к передаче инициирующего импульса. Эта способность волновода сохраняется и в случае неоднократного его перегиба и завязывания узлом. Возбуждение инициирующего импульса в волноводе может осуществляться от стандартных капсюлей-детонаторов типа КД №6, КД №8, электродетонаторов, детонирующих шнуров с навеской не менее 6 г/м, а также от высокоэнергетической искры мощностью не менее 5 Дж.

Для инициирования промышленных взрывчатых веществ в скважинах и шпурах применяются промежуточные детонаторы и патроны боевики, собранные с НСИ в качестве промежуточных детонаторов и патронов боевиков могут использоваться двухканальные шашки-детонаторы типа "Т", "ТГ", а также одноканальные шашки-детонаторы типа Т-400Г, патроны аммонита № 6ЖВ и патронированные эмульсионные ВВ кл.1.1.

НСИ Прима-ЭРА в отличие от применяемых традиционных средств инициирования обеспечивает повышенную безопасность. Благодаря низкой чувствительности к блуждающим токам, она позволяет производить взрывные работы без обесточивания энергетического оборудования.

Преимуществами НСИ. Прима-ЭРА является низкая чувствительность к механическим воздействиям, простота и надежность монтажа взрывной сети, повышенная безопасность при хранении, транспортировании и использовании. НСИ Прима-ЭРА позволяет создавать схемы короткозамедленного взрывания зарядов с практически неограниченными возможностями управления процессами разрушения массивов горных пород, эффективно снижать сейсмическое и воздушно-ударное действие взрыва и одновременно улучшает результаты взрывных работ.

При инициировании относительно нечувствительных взрывчатых веществ, таких как эмульсионные ВВ, детонирующий шнур может способствовать нежелательному уплотнению и выжиганию взрывчатых веществ, что снижает эффективность их применения. В отличии от детонирующего шнура НСИ не разрушает и не уплотняет ЭВВ, соответственно, использование НСИ позволяет повысить эффективность их применения при ведении горных работ.

4.3 Комбинированные способы взрывания

Из известных комбинированных способов инициирования наибольшее распространение получили электроогневой и способ взрывания с помощью детонирующих шнуров (ДШ).

4.3.1 Электроогневое взрывание

Электроогневое инициирование применяют вместо огневого способа в том случае, когда своевременный отход взрывников в укрытие затруднен по каким-либо причинам. Поджигание отрезков ОШ осуществляется взрывником из безопасного места подачи электрического тока в электрозажигательное устройство, закрепленное на конце ОШ.

Электрозажигательный патрон ЭЗ-ОШ-Б (рис.27,а) состоит из бумажной гильзы с воспламенительной смесью и электрозажигателя. Электрозажигательный патрон ЭЗП-Б (рис.27,б) предназначен для зажигания нескольких отрезков ОШ в сухих и увлажненных условиях. Отрезки ОШ вводят в патрон и закрепляют путем обжима резиновым кольцом на гильзе

патрона.

Рис.27 Конструкции электрозажигательных патронов:

а – патрон ЭЗ-ОШ-Б: 1, 3 – обжимные металлические втулки; 2 – бумажная (металлическая) гильза; 4 – бумажная втулка; 5 – электровоспламенитель; б – патрон ЭЗП-Б: 1 – электровоспламенитель; 2 – зажигательный состав; 3 – бумажная гильза с вырезами; 4 – резиновое кольцо; 5 – выводные провода; 6 – вставное дно гильзы.

Во время использования электрозажигательных патронов концы огнепроводных шнуров следует подрезать для создания необходимых интервалов между взрываемыми зарядами. Минимальная длина ОШ должна быть не менее 25 см.

Электроогневое взрывание должно проводиться с учетом соответствующих требований Единых правил безопасности при взрывных работах. Электроогневому взрыванию шпуровых зарядов присущи те же недостатки, что и огневому взрыванию.

4.3.2 Взрывание с помощью детонирующего шнура (ДШ)

ДШ предназначен для передачи детонации от КД или ЭД к заряду ВВ и от заряда к заряду на требуемые расстояния.

На рис.28 показаны элементы ДШ. Сердцевину ДШ изготавливают из ТЭНа с направляющими нитками или без них и покрывают оплетками из льняных и хлопковых ниток. Для повышения водостойкости внешние оплетки шнура покрывают воском или озокеритом. Шнур для подводного взрывания дополнительно прокрывают полихлорвиниловой оболочкой.

Рис.28 Детонирующие шнуры ДША (а) и ДШВ (б):

1 – внешняя оплетка с двумя красными нитями 2; 3, 4 – льняные оплетки; 5 – хлопковая оплетка; 6 – ТЭН; 7 – направляющая нить; 8 – полиэтиленовая оболочка; 9 – армирующие капроновые нити.

Все шнуры устойчиво детонируют от КД или ЭД до температуры +55°С, а при охлаждении в течение 2 часов – до температуры –35°С. Для создания необходимых замедлений между взрываемыми зарядами используют пиротехнические замедлители детонирующего шнура – КЗДШ-69, предусматривающие замедления в 10, 20, 35, 50, 75 та 100 мс.

Замедлитель КЗДШ-69 для создания необходимых замедлений включают в разрыв нитки ДШ. Следует помнить, что детонацию замедлитель передает

только в одном направлении, которое стрелкой показано на его корпусе.

В нашей стране начат выпуск замедлителей РП-8 двухстороннего типа с двумя детонаторами и замедлителями, развернутыми на 180°. Замедлитель удобно монтировать в разрыв сети ДШ с помощью полиэтиленовых зажимов, предусмотренных в конструкции РП-8.

Из опыта взрывных работ, которые проводились в нашей стране, США, Швеции, Испании и других стран, детонирующие шнуры успешно применяются в условиях:

- потенциальной опасности возникновения блуждающих токов;

- одновременного инициирования групп зарядов ВВ без существенных замедлений в срабатывании отдельных зарядов;

- многорядного или многоярусного инициирования зарядов ВВ в глубоких скважинах большого диаметра;

- дублирования электрической системы инициирования в тяжелых условиях – в глубоких дорогих скважинах, пробуренных по трещиноватым породам;

- инициирования зарядов ВВ во время вторичного взрывания негабаритных кусков в рудоспусках и т.д.

Технология взрывания с помощью ДШ. Для взрывания с помощью ДШ необходимо:

- разрезать шнур на отрезки для изготовления патронов-боевиков;

- изготовить патроны-боевики;

- подать предупредительный сигнал, выполнить заряжание и забойку зарядов;

- выполнить монтаж сети ДШ;

- подать боевой сигнал, присоединить ко магистрали КЗДШ (РП-8), КД или ЕД и произвести взрыв;

- после взрыва осмотреть забой;

- при наличии отказов ликвидировать их и подать сигнал отбоя.

Отрезки ДШ между собой соединяют внакладку или внакрутку на длине не менее 100 мм, рис.29. Шнуры закрепляют изоляционной лентой, шпагатом или скотчем. Наиболее надежным способом наращивания ДШ является их связывание морским узлом или петлей.

Рис.29 Основные способы соединения ДШ при монтаже взрывной сети.

Для более высокой надежности применяют дублирование ниток ДШ. При этом дублирующие и основные сети инициируют одним детонатором.

Достоинства взрывания с помощью ДШ:

- минимальная опасность выполнения заряжания и особенно ликвидации отказов и простота их выполнения.

Недостатки взрывания с помощью ДШ:

- отсутствие приборного контроля исправности сети перед взрывом и высокая стоимость ДШ.

В табл.9 представлены неэлектрические средства инициирования зарядов ВВ и электрозажигательные устройства, применяемые на открытых и подземных горных работах в шахтах и рудниках не опасных по взрыву газа и пыли.

Таблица 9

Неэлектрические средства инициирования зарядов ВВ

<< | >>
Источник: Институт дистанционного обучения. Технология и безопасность взрывных работ. 2010

Еще по теме 4. Способы и средства взрывания зарядов ВВ:

  1. О способе передачи стали магнитной силы. О способе намагничивания стрелки компаса; о простом контакте, его недостатках и средствах их устранения
  2. Средство и способ словообразования
  3. СПОСОБЫ ВВЕДЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ
  4. Средства и способы выражения грамматических значений
  5. ПИТАТЕЛЬНЫЕ СРЕДСТВА И СПОСОБЫ ИХ ПРИГОТОВЛЕНИЯ
  6. § 33. Способы и средства связи предложений в тексте
  7. ГЛАВА 7 СРЕДСТВА И СПОСОБЫ ЭВАКУАЦИИ БОЛЬНЫХ И ПОСТРАДАВШИХ
  8. Способы устранения антимикробного действия лекарственных средств
  9. СПОСОБЫ И СРЕДСТВА НАУЧНОГО РЕШЕНИЯ ПРОБЛЕМ ЭКСПЕРИМЕНТАЛЬНОЙ ПЕДАГОГИЧЕСКОЙ ПСИХОЛОГИИ
  10. Г. Трагикомедия «освободительного» заговора как способ разложения наших сил и отнятия средств защиты –admajorem Israeli gloriam!..
  11. СРЕДСТВА, СНИЖАЮЩИЕ СВЕРТЫВАЕМОСТЬ КРОВИ (АНТИТРОМБОТИЧЕСКИЕ СРЕДСТВА)
  12. СИМПАТОЛИТИЧЕСКИЕ СРЕДСТВА (СИМПАТОЛИТИКИ) ИЛИ СРЕДСТВА, УГНЕТАЮЩИЕ ПЕРЕДАЧУ ВОЗБУЖДЕНИЯ С АДРЕНЕРГИЧЕСКИХ НЕЙРОНОВ
  13. СРЕДСТВА, БЛОКИРУЮЩИЕ М-ХОЛИНОРЕЦЕПТОРЫ ( М-ХОЛИНОБЛОКАТОРЫ, АТРОПИНОПОДОБНЫЕ СРЕДСТВА)
  14. СРЕДСТВА УГНЕТАЮЩИЕ ЦНС. СНОТВОРНЫЕ СРЕДСТВА.